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Input Data  (MKS system) 

TairF
TgndF
Tsky

σ
A
k
h
width 

Air temperature Fahrenheit  
ground temperature Fahrenheit  
sky temperature Kelvin  
Stefan-Boltzmann constant
Area of glass plate (taken as 1)
thermal conductivity of glass
convection heat transfer coefficient of air
width (thickness) of glass plate suspended above the ground

TairF 40:= TgndF 45:= Tsky 203.15:= Kelvin ( Tsky is about -70 Celsius)

h 10:= A 1:= σ 5.669 10
8−

⋅:= k .78:=

width .000000001:= Meters  (Really thin glass plate!)

Temperature conversion formulas: 

FtoK TF( ) 5

9






TF 32−( )⋅ 273.15+:= Fahrenheit to Kelvin

KtoF TF( ) 9

5






TF 273.15−( )⋅ 32+:= Kelvin to Fahrenheit

So

Tair FtoK TairF( ):= Tair 277.594= Kelvin

Tgnd FtoK TgndF( ):= Tgnd 280.372= Kelvin

VERY THIN PLATE

The following is a formula and calculation of the Kelvin temperature for the top of a very thin plate
which can be used as a rough check on results obtained later for the more general  formula developed
below for a plate with finite thickness.  

We will see later that a plate with finite thickness retards the heat flow and causes the top surface of a
thick plate to become colder than the top surface of an extremely thin plate.

The formula immediately below is from Reference 3.



Tcp root σ A⋅ Tcp
4

Tsky
4

−



⋅

σ A⋅ Tcp
4

Tgnd
4

−



⋅+

...

2− h⋅ A⋅ Tair Tcp−( )⋅+
...

Tcp, Tair 40−, Tair 40+,











float 5, 269.87→:=

Or KtoF Tcp( ) 26.096= Fahrenheit 

DERIVATION OF HEAT EQUATIONS FOR A GLASS PLATE OF FINITE THICKNESS

Now here are the equations for a thick glass plate using heat transfer equations of conduction,
convection, and radiation:

Radiation.  Glass plate to 
sky.qrtop σ A⋅ Ttop

4
Tsky

4
−



⋅:= Ttop

Radiation.  Ground to glass
plate.qrbottom σ A⋅ Tbottom

4
Tgnd

4
−



⋅:= Tbottom

Convection on top side 
of glass plate.qcvtop h A⋅ Tair Ttop−( )⋅:= Ttop

Convection on bottom side 
of glass plate.qcvbottom h A⋅ Tair Tbottom−( )⋅:= Tbottom

Conduction through glass
plate.qcond

k− A⋅ Ttop Tbottom−( )⋅

width
:=

Ttop

Heat exiting the glass plate's top surface must equal 
the heat entering the glass plate's bottom surface so 

          qrtop + qrbottom := qcvtop + qcvbottom                     Eq1 

Also, the total heat being conducted through the glass 
plate must equal the total heat exiting the plate's top 
surface so

          qcond  := qrtop - qcvtop                                       Eq2 

SOLUTION OF EQ1 AND EQ2 FOR A VERY THIN GLASS PLATE

This solution should give results similar to the results obtained above where we used the
equations from reference 3.  This will serve as a test of our more general system of equations
(Eq1 and Eq2).



So we have two equations (Eq1 and Eq2) and two unknowns (Ttop and Tbottom).  We can use MathCad's

"solve block" method to solve for Ttop and Tbottom.  

The "solve block" method requires an initial "guess" for the value of Ttop and Tbottom so that its iterative

convergence routines will converge to a solution.  The system of equations comprised of Eq1 and
Eq2 has 16 solutions but only one of these solutions contain real numbers that are in the range: 

           200<Ttop<300 and 200<Tbottom<300.  

(200 Kelvin corresponds to -99.7 F and 300 Kelvin corresponds to 80.3 F)

Since we know the solution should be in that range, a good initial guess for each is 250.

Ttop 250:= Initial guess for Ttop

Tbottom 250:= Initial guess for Tbottom 

Given

σ A⋅ Ttop
4

Tsky
4

−



⋅ σ A⋅ Tbottom

4
Tgnd

4
−



⋅+ h A⋅ Tair Ttop−( )⋅− h A⋅ Tair Tbottom−( )⋅− 0=

k− A⋅ Ttop Tbottom−( )⋅

width
σ A⋅ Ttop

4
Tsky

4
−



⋅− h A⋅ Tair Ttop−( )⋅ + 0=

Ttop 200>

Ttop 300< Restrict solution range

Tbottom 200>

Tbottom 300<

v Find Ttop Tbottom,( ):= Find the solution vector

v
269.869

269.869








=
Ttop

Tbottom









So we now have the Kelvin temperatures of the top and bottom of the 
extremely thin glass plate in the vector v.  

TtopK v0:=

TbottomK v1:=



We see that for a really thin glass plate, the top surface temperature and the bottom surface Kelvin
temperatures (269.87) are equal and match the results of the earlier formula
described in reference 3.  This should happen if our system of equations is correct so it
lends some credence to our general equations.

Converting TtopK from Kelvin back to Fahrenheit we find that the top surface of the glass 
plate will reach the Fahrenheit temperature of:

TtopF1 KtoF TtopK( ):=

TtopF1 26.094= Degrees Fahrenheit!

This explains a lot!  With an air temperature of 40 Degrees F, a ground temperature 
of 45 Degrees F and a nice clear sky with a sky temperature of -70 Degrees C, the 
surface temperature of a very thin plate will be 6 Degrees F below freezing!

SOLUTION FOR A ONE QUARTER INCH THICK GLASS PLATE

It is a little worse if the glass plate is about the thickness of a telescope corrector plate,
which for a 10" telescope tends to be approximately 1/4 inch thick (about .0063 meters)

If we rerun the equations for the case where "width" is .0063 meters then we have
the following:

width .0063:= (.0063 meters = 1/4 inch)

Ttop 250:= Initial guess for Ttop

Tbottom 250:= Initial guess for Tbottom 

Given

σ A⋅ Ttop
4

Tsky
4

−



⋅ σ A⋅ Tbottom

4
Tgnd

4
−



⋅+ h A⋅ Tair Ttop−( )⋅− h A⋅ Tair Tbottom−( )⋅− 0=

k− A⋅ Ttop Tbottom−( )⋅

width
σ A⋅ Ttop

4
Tsky

4
−



⋅− h A⋅ Tair Ttop−( )⋅ + 0=

Ttop 200>

Ttop 300< Restrict solution range

Tbottom 200>

Tbottom 300<

v Find Ttop Tbottom,( ):= Find the solution vector



v
269.384

270.352


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
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=
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Tbottom
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
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

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We now have the Kelvin temperatures of the top and bottom of the glass plate in
the vector v.  

TtopK v0:=

TbottomK v1:=

TtopK 269.384=

TbottomK 270.352=

We see that the top surface is colder and the bottom surface is warmer than for the
case of the very thin glass plate.  This is what we would expect since the thicker
glass retards the flow of heat.

Converting from Kelvin back to Fahrenheit we find that the top surface of the glass plate will
now reach the Fahrenheit temperature of:

TtopF2 KtoF TtopK( ):=

TtopF2 25.221= Degrees Fahrenheit

The temperature of the top surface of the one quarter inch thick glass plate is thus 
about .9 Degrees F colder than the surface of the very thin glass plate:

TtopF1 TtopF2− 0.872=

So we have explained with some precision why dew and even ice forms so readily on car windshields and
telescope corrector plates when the sky is very clear at night.  

Dew will begin to form of course any time the top surface of the glass plate becomes 
colder than the local dew-point temperature.  (The local dew point temperature is
typically available from local weather reports.  "Weather radio" for example.)

SOLUTION FOR A ONE METER THICK GLASS PLATE!

For a really thick piece of glass, (1 meter thick!), the temperature of the top surface 
can, for the above temperature parameters, get down to 11.6 degrees F!  

An additional 14.5 Degrees F below the quarter inch thick glass plate case!



We rerun the equations for the case where "width" is 1.0 meters:

width 1.0:=

Ttop 250:= Initial guess for Ttop

Tbottom 250:= Initial guess for Tbottom 

Given

σ A⋅ Ttop
4

Tsky
4

−



⋅ σ A⋅ Tbottom

4
Tgnd

4
−



⋅+ h A⋅ Tair Ttop−( )⋅− h A⋅ Tair Tbottom−( )⋅− 0=

k− A⋅ Ttop Tbottom−( )⋅

width
σ A⋅ Ttop

4
Tsky

4
−



⋅− h A⋅ Tair Ttop−( )⋅ + 0=

Ttop 200>

Ttop 300< Restrict solution range

Tbottom 200>

Tbottom 300<

v Find Ttop Tbottom,( ):= Find the solution vector

v
261.839

277.683








=
Ttop

Tbottom









We now have the Kelvin temperatures of the top and bottom of the glass plate in
the vector v.  

TtopK v0:=

TbottomK v1:=

TtopK 261.839=

TbottomK 277.683=

We see that the top surface is much colder and the bottom surface is much warmer than for the
case of the quarter inch glass plate.  This is what we would expect since a thick glass 
plate retards the flow of heat more than a thin one.

Converting from Kelvin back to Fahrenheit we find that the top surface of the glass plate will
now reach the Fahrenheit temperature of:



TtopF2 KtoF TtopK( ):=

TtopF2 11.64= Degrees Fahrenheit

The temperature of the top surface of the thick glass plate is thus about 
14.45 Degrees F colder than the surface of the very thin glass plate:

TtopF1 TtopF2− 14.453=
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